Question		n	Expected Answers	Μ	Additional Guidance
1					
	а	i	method of producing coherent sources at S ₁ and S ₂	B1	e.g. initial single slit
			light (waves) from the two slits/sources must be coherent;	B1	
			that is, they must have a constant phase relationship/difference	B1	
			slits must be narrow/close together (so that diffraction patterns		
			overlap)	B1	
			light (waves) from two slits must have similar amplitudes/intensities	B1	max 3 marks from 5 marking points
		ii	bright: constructive interference occurs/waves add to give a		
			maximum amplitude at the screen	B1	
			path difference between slits and screen is a whole/integer number		accept explanation in terms of distance or phase
			of wavelengths/waves arrive in phase at screen	B1	
			dark: destructive interference occurs/waves add to give a minimum		
			amplitude/zero at the screen	B1	
			path difference between slits and screen is an odd half number of	5.	accept explanation in terms of distance or phase
			wavelengths/waves arrive out of/in antiphase at screen	B1	
	b	<u> </u>	$7.4/5 = 1.48 \times 10^{-5} \text{ (m)}$	B1	accept 1.5 mm
		II	$\lambda = xd/L$	C1	using 1.5 mm gives 600 nm
			$= 1.48 \times 10^{\circ} \times 0.6 \times 10^{\circ}/1.5$	C1	ect(b)(i) e.g. 4 92 x 10' for 1.23 mm
			$= 5.9(2) \times 10^{-7} (m)$	A1	accept 590 nm
	С		pattern/fringes vanish	B1	
			because there is now no interference from light from the two slits/AW	B1	
			light spreads out over whole/similar region	B1	
			light intensity (at screen) is less	B1	
			diffraction spreads light	B1	
			simple description of single slit pattern	B1	e.g. bright in middle and dim at edges/sketch of bell
			further features of single all pattern	D O	snape
			Turther reatures of single slit pattern	BZ	max 3 marks from 8 marking points
			l otal question 6	14	

Question		Expected Answers	Μ	Additional Guidance
2				
	а	reference to a transverse wave or to vibrations in plane normal to the direction of (energy) propagation	B1	can be answered with suitable diagram(s)
		(containing the direction of propagation)	B1	NOT the wave oscillating in one plane
	b	 set up apparatus, e.g. tray of water on table with lamp/light from window rotate the filter rotation of filter changes the image intensity/brightness/AW correct orientation for maximum and minimum intensities of image move head up or down to change angle of reflected light observed use of protractor to measure angles image/reflection becomes partially plane polarised/ image changes 	B1 B1 B1 B1 B1 B1	QWC mark essential for full marks allow from bright to zero or vice versa transmission axis parallel to water surface for maximum and perpendicular for minimum can hold head still and move lamp
		from bright to dim but does not disappear	B1	max 3 from 6 marking points + QWC mark
	C	I = I ₀ cos ² θ where I ₀ is the maximum intensity (of the polarised beam) when θ is zero maximum intensity transmitted/ image bright when θ is 90° minimum/zero intensity transmitted/image dim/vanished	B1 B1 B1 B1	allow incident/original/initial for maximum
		Total question 7	10	

Question		on	Expected Answers	Μ	Additional Guidance
3					
	а	i	travel through a vacuum	B1	allow travel at c (in a vacuum)
	b	ii	A gamma; C uv;	B3	allow 1 mark for A radio; C ir;
			F microwave		F X-ray
	С	i	$3.0 \times 10^8 = 1.0 \times 10^9 \lambda$	C1	
			$\lambda = 0.30 \text{ m}$	A1	allow 0.3 no SF error
		ii	aerial length = $\lambda/2$ = 0.15 m	A1	ecf (c)(i)
		iii	emitted wave is (plane) polarised	B1	allow max signal initially/at 0°
			detecting aerial will receive weaker signal/cos θ component		
			when it is rotated (through angle θ)/AW	B1	
			signal falls to zero at 90°	B1	
			and then rises to max again at 180°		max 3 marks from 4 marking points
	d	i	UV-A causes tanning or skin ageing ; most of (99%) uv light;	B1	accept values within ranges with tolerance of
			400-31		20 nm allow $\lambda_A > \lambda_B > \lambda_C$ for 1 mark
			UV-B causes damage or sunburn or skin cancer; 315-260 nm	B1	
			UV-C is filtered out by atmosphere/ozone layer; 260-100 nm	B1	max 3 marks from 7 marking points
		ii	filters out/blocks/reflects/absorbs UV(-B)	B1	allow chemicals prevent sunburn/skin cancer
					not stops UV penetrating skin
	е		energy of the infra-red photon is less than	B1	accept frequency and threshold frequency or
			the work function of the metal surface	B1	wavelength and threshold wavelength used
					correctly in place of energy and work function
					1 mark only: energy of the uv photon greater
					than work function with no mention of ir
			Total question 5	16	